SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Subject Code: 22216

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER- 18 EXAMINATION

	Ans:		1M each
	c	List any two BJT biasing circuits with respect to operating point.	2M
	Ans:	1) Fixed bias 2) Base biased with emitter feedback 3) Collector to base bias 4) Voltage divider bias	Any two 1M each
	d	State different methods of biasing of FET.	2M
	Ans:	1) Fixed bias 2) Self bias 3) Voltage divider bias 4) Source bias	$1 / 2$ M each
	e	Sketch reverse characteristics of zener diode with proper labelling.	2M
	Ans:	Reverse characteristic of a zener diode.	1M diagra m 1M labeling
	f	Define line regulation. State the formula for its regulation.	2M

SUMMER- 18 EXAMINATION

Ans:	Line regulation:-It is the ability of the power supply to maintain its specified output voltage over changes in the input line voltage. It is expressed as percent of change in the output voltage relative to the change in the input line voltage. Formula:- $\text { Line regulation }=\left(\frac{\Delta V_{\text {OUT }}}{\Delta V_{I N}}\right) \times 100 \%$ Δ means "a change in" (OR) The change in output voltage with respect to per unit change in input voltage is defined as line regulation. It is mathematically expressed as, Where, $\Delta \mathrm{V}_{\mathrm{L}}=$ The change in output voltage $\Delta \mathrm{V}_{\mathrm{s}}=$ The change in input voltage	
g	State cut in voltage value of diode for silicon and germanium.	2M
Ans:	The cut in voltage value of diode for silicon is 0.7 Volt and for Germanium is 0.3 Volt	$\mathbf{1 M}$ each

SUMMER-18 EXAMINATION
Subject Name: Basic Electronics
Model Answer
Subject Code:
22216

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \mathrm{Q} . \\
\& \text { No. }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Sub } \\
\& \text { Q. N. }
\end{aligned}
\] \& Answers \& \begin{tabular}{l}
Marking \\
Scheme
\end{tabular} \\
\hline 2 \& \& Attempt any THREE: \& 12- Total Marks \\
\hline \multirow[t]{2}{*}{} \& a \& Describe experimental set-up for operation of P-N junction diode in forward bias. Draw its characteristics. \& 4M \\
\hline \& Ans: \& \begin{tabular}{l}
Experimental set up Forward characteristics:- \\
Explanation:- \\
- PN junction diode is forward biased when positive terminal of the power supply is connected to the \(P\)-type side, and the negative terminal of the power supply is connected to the N -type side. \\
- When a PN junction is forward biased, the holes are repelled from the positive terminal of the battery and are moved towards the junction. \\
- Similarly the free electrons are repelled from the negative terminal of the battery and move towards the PN junction. \\
- Because of their acquired energy (from the battery \(\mathrm{V}_{\mathrm{FF}}\)), some of the holes and the free electrons enter into the depletion region and recombine themselves. \\
- This reduces the potential barrier and the width of the depleting region. \\
- The width of depletion region and the barrier potential reduces with the increase in forward bias. \\
- As a result of this, more majority carriers diffuse across the junction. Therefore, it
\end{tabular} \& 2M

1M

\hline
\end{tabular}

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Subject Code:
22216

SUMMER- 18 EXAMINATION

c	Explain basic block diagram of regulated DC power supply, draw its input and output waveforms.	4M
Ans:	Block diagram of regulated DC power supply:- 1. Transformer:- The AC main voltage is applied to a step down transformer. It reduces the amplitude of ac voltage to the desired level and applies it to a rectifier. 2. Rectifier: The rectifier is usually a centre tapped or bridge type full wave rectifier. It converts the ac voltage into a pulsating dc voltage. 3. Filter: The pulsating dc (or rectified ac) voltage contains large ripple. This voltage is applied to the filter circuit and it removes the ripple. The function of a filter is to remove the ripples to provide pure DC voltage at its output. The DC output voltage thus obtained will change with the changes in load current,input voltage, etc. So it is unregulated DC voltage. 4. Voltage Regulator :- The unregulated DC voltage is applied to a voltage regulator. Output of the regulator circuit will be constant voltage under all operating circumstances.	2M 2M for explanat ion

SUMMER- 18 EXAMINATION

d	Explain the need of stabilization of Q point.	4M
Ans:	- Bias stabilization is a process of stabilizing the position of operating point " Q " - The stabilization of Q-point is necessary to maintain the Q-point at the centre of load line because the bias point (Q-point) changes its position on the load line due to the factors such as temperature or device to device variations. - If the Q-point gets shifted towards saturation or cut off regions, then amplified output waveform is distorted. In order to avoid such distortion it is necessary to stabilize the Q-point at the centre of the load line. - So we need to design a biasing circuit which will keepthe position of Q-point stable on the load line.	4M

SUMMER-18 EXAMINATION
Subject Name: Basic Electronics
Model Answer

Subject Code:
22216

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any four:	16- Total Marks
	a	Describe circuit diagram of bridge rectifier, draw its input and output waveforms.	4M
	Ans:	Circuit diagram: When input AC signal is applied across the bridge rectifier, during the positive half cycle diodes D_{1} and D_{2} are forward biased and conduct while the diodes D_{3} and D_{4} are reverse biased and current flows through the load from point $A-D_{1}-$ load- D_{2}-point B. During the negative half cycle diodes D_{3} and D_{4} are forward biased and conduct while diodes D_{1} and D_{2} are reverse biased and current flow through the load from point $B-D_{3-}$ load-D4-point A. As the current flowing through the load is unidirectional, the voltage developed across the load is also unidirectional as shown in the waveform.	Circuit diagram2M Explanation 1M Waveform 1M

b	Explain the working of positive clamper with proper circuit diagram and draw the waveforms at input \& output of clamper.	4M
Ans:	Positive clamper circuit: Fig. 2 Positive Clamper - The circuit will be called a positive clamper, when the signal is pushed upward by the circuit. - During the positive half cycle, the diode is/reverse biased. - During the negative half cycle, it is forward biased and current flows through it. It charges the capacitor to the negative peak voltage $-\mathrm{V}_{\mathrm{m}}$ - Once the capacitor is fully charged to $-V_{m}$, cannot discharge because the diode cannot conduct in the reverse direction. - Therefore the capacitor acts as a battery with e.m.f equal to $-V_{m}$. - This voltage gets added to the input signal, $\quad V_{m} \cdot \sin \omega t$. - Therefore the output voltage is equal to, $v_{0}=V_{m} \cdot \sin \omega t+V_{m}$ - Thus a d.c voltage equal to V_{m} is added to input signal. It causes the waveform to clamp positively at 0 V .	Circuit diagram2M Explanation 1M Waveform 1M
c	A JFET has $\mathrm{I}_{\mathrm{Dss}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=\mathbf{- 5}$ volts, $\mathrm{gmo}=\mathbf{2} \mathrm{ms}$. Calculate the trans-conductance and drain current of the JFET for $\mathrm{V}_{\mathrm{Gs}}=\mathbf{- 2 . 5}$ volts.	4M
Ans:	The expression for drain current ID, in the saturation region is, $I_{D}=I_{D \Delta S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$	Formula-

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics

Ans:	Transistor (Q)- It acts as a control element and it is connected in series with the load resistor RL. It also acts as a variable resistor to control the output voltage. Zener Diode- It provides reference voltage. Resistor (R)- It acts as a current limiting resistor. Base Resistor (R_{B})-It provides biasing for transistor Q to keep the transistor in active region.	Diagram- 2M Function of component2M

SUMMER- 18 EXAMINATION
Subject Name: Basic Electronics

Subject Code:
22216

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Subject Code:
22216

SUMMER- 18 EXAMINATION
Subject Name: Basic Electronics
Model Answer
Subject Code:
22216

SUMMER- 18 EXAMINATION

will reduce the number of free electrons in the channel for conduction. So drain current reduces. The value of $V_{G S}$ at which drain current is nearly equal to zero is called cut off voltage.

When gate is positive with respect to source, then positive V_{GS} draws additional electrons from the P type substrate. Thus drain current (I_{D}) increases as increase in positive $V_{G S}$.

OR
Enhancement - Type MOSFET:-

Circuit Operation:

In fig. both $\mathrm{V}_{G S} \& \mathrm{~V}_{\mathrm{DS}}$ have been set at positive with respect to the source. The positive potential at the gate will attract the electrons from the P substrate \& accumulate in the region near to the surface of SiO_{2} layer. The SiO_{2} layer \& its insulating qualities will prevent the negative carriers (i.e. electrons) from being absorbed at the gate.

As $\mathrm{V}_{G S}$ increases, the concentration of electrons near the SiO_{2} surface increases \& there is formation of channel \& the current starts following through the circuit for further applied voltage.

e	Describe the working of zener as a voltage regulator.	4M
Ans:	Working For proper operation, the input voltage V_{i} must be greater than the Zener voltage V_{z}. This ensures that the Zener diode operates in the reverse breakdown condition. The unregulated input voltage V_{i} is applied to the Zener diode. Suppose this input voltage exceeds the Zener voltage. This voltage operates the Zener diode in reverse breakdown region and maintains a constant voltage across the load inspite of input AC voltage fluctuations or load current variations. The input current is given by, $I_{S}=\left(V_{i}-V_{z}\right) / R_{s}=\left(V_{i}-V_{0}\right) / R_{s}$ We know that the input current I_{s} is the sum of Zener current I_{z} and load current I_{L}. Therefore, $I_{S}=I_{Z}+I_{L}$ or $I_{z}=I_{S}-I_{L}$ As the load current increase, the Zener current decreases so that the input current remains constant. According to Kirchhoff's voltage law, the output voltage is given by, $V_{o}=V_{i}-I_{s} . R_{s}$ As the input current is constant, the output voltage remains constant. The reverse would be true, if the load current decreases. This circuit is also correct for the changes in input voltage. As the input voltage increases, more Zener current will flow through the Zener diode. This increases the input voltage Is, and also the voltage drop across the resistor Rs, but the load voltage Vo would remain constant. The reverse would be true, if the decrease in input voltage is not below Zener voltage. Thus, a Zener diode acts as a voltage regulator and the fixed voltage is maintained across the load resistor RL.	Diagram 2M Working 2M

SUMMER-18 EXAMINATION
Subject Name: Basic Electronics
Model Answer

Subject Code:
22216

Q. No.	Sub Q. N.	Answers	Marking Scheme
5		Attempt any TWO:	12- Total Marks
	a	Explain drain characteristics of JFET with ohmic region, saturation region, cut-off region and break down region.	6M
	Ans:	The drain characteristics of JFET can be explained as follows: Ohmic Region: This region is represented by curve OA in the figure. In this region, the drain current increases linearly with the increase in drain-to-source voltage, obeying Ohm's law. The linear increase in drain current is due to the fact that N -type semiconductor bar acts like a simple resistor. Curve AB: In this region, the drain current increases at the reverse square law rate with the increase in drain-to-source voltage. It means that drain current increases slowly as compared to that in ohmic region. It is because of the fact, that with the increase in drain-to-source voltage, the drain current increases. This in turn increases the reverse	3 Marks for characteristics

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Subject Code:

SUMMER- 18 EXAMINATION
Subject Name: Basic Electronics
Model Answer
Subject Code:
22216

		It indicates that forward current is very small for voltages below knee (cut-in) voltage and large for voltages above knee voltage. Reverse characteristics : Zener diode is silicon p -n junction device which differs from a rectifier diode, in the sense, that it is operated in the reverse breakdown region. When the reverse voltage across a diode is increased a critical voltage called breakdown voltage, the reverse current increases sharply as shown in the curve KM. This is an indication that the breakdown has occurred. This breakdown voltage is called as Zener breakdown voltage or Zener voltage and it is denoted by V_{z}. The breakdown voltage of Zener diode is set by carefully controlling the doping level during manufacture. After breakdown has occurred, the voltage across Zener diode remains constant equal to V_{z}. Any increase in the source voltage will result in the increase in reverse Zener current.	4 Marks for description
Q. No	Sub Q. N.	Answers	Marking Scheme
6		Attempt any TWO:	12- Total Marks
	a	Show constructional details of LED. Give any two applications of LED.	6M
	Ans:	Constructional details of LED: A pn junction diode, which emits light when forward biased, is known as a light emitting diode (LED). This emitted light may be visible or invisible. The amount of light output is directly proportional to the forward current. Thus higher the forward current, higher is the light output. Here, an N-type layer is grown on P-type substrate by a diffusion process. Then a thin Ptype layer is grown on N-type layer. It has two electrodes namely Anode and Cathode. The light energy is released at the junction, when the recombination of electrons with the holes takes place. After passing through the P-region, the light is emitted through the window provided at the top of the surface.	2 Marks for Construction

SUMMER- 18 EXAMINATION

	Applications of LED: 1. It is used in opto couplers. 2. It is used in optical communication systems. 3. It is used in infrared remote control. 4. It is used in 7-segment,16- segment, alphanumeric displays. 5. It is used as indicators in various electronic circuits. 6. It is used in optical switching applicátions. 7. It is used in burglar alarm systems. 8. It is used to indicate digitallogic state. 9. Used for traffic signal management 10. Used in aviation lighting, automotive lighting, advertising and general lighting	2 Marks for diagram(any one) 2 Marks for any 2 Applications
b	Describe the working of single stage CE amplifier with neat circuit diagram.	6M
Ans	Single stage CE amplifier Circuit diagram:	3 Marks for any diagram

SUMMER- 18 EXAMINATION

(OR)

Working of single stage CE amplifier :
The circuit diagram of a voltage amplifier using single transistor in CE configuration is shown in above figure.

It is also known as a small-signal single-stage CE amplifier or RC coupled CE amplifier. It is also known as a voltage amplifier.

- The input a.c. signal is applied across the base emitter terminals of the transistor \& output is taken across collector emitter terminals of the transistor.
- The potential divider biasing is provided by resistors R_{1}, R_{2} and R_{E}. It provides good stabilization of the operating point.
- The capacitors C_{1} and C_{2} are called the coupling capacitors used to passes the AC voltage signals from one side to the other. At the same time, it does not allow the

3 Marks for working

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Subject Code:
22216

